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Taylor–Aris dispersion in temperature
gradient focusing

Microfluidic temperature gradient focusing (TGF) uses an axial temperature gradient to
induce a gradient in electrophoretic flux within a microchannel. When balanced with an
opposing fluid flow, charged analytes simultaneously focus and separate according to their
electrophoretic mobilities. We present a theoretical and experimental study of dispersion in
TGF. We model the system using generalized dispersion analysis that yields a 1-D convec-
tion-diffusion equation that contains dispersion terms particular to TGF. We consider ana-
lytical solutions for the model under uniform temperature gradient conditions. Using a
custom TGF experimental setup, we compare focusing measurements with the theoretical
predictions. We find that the theory well represents the focusing behavior for flows within
the Taylor–Aris dispersion regime.
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1 Introduction

Over the last decade, microfluidics technology has con-
tributed to the development of many miniaturized bioanaly-
tical techniques, in pursuit of the goal of the micro total
analysis system (mTAS) or “lab-on-a-chip” system [1–3].
Miniaturization can yield significant performance improve-
ments in speed, reagent consumption, and integration cap-
ability. However, the development of robust, highly sensitive
on-chip assays still poses significant challenges. For this
reason, on-chip preconcentration techniques are of great
interest to the microfluidics community. Examples include
field-amplified sample stacking [4, 5], micellar sweeping [6],
and IEF [7]. Microfluidic temperature gradient focusing
(TGF) [8] is a promising assay that simultaneously con-
centrates and separates charged species according to their
electrophoretic mobilities. TGF can be classified as a type of
electric field gradient focusing [9].

The capabilities of TGF allow it to be used in analytical
(i.e., detection and separation) and preparative (i.e., con-
centration and purification) applications. For both types of
applications, an important design goal is the minimization

of the physical phenomena that cause band broadening,
which fall under the general term “dispersion”. Decreasing
dispersion improves resolution and sensitivity in separation
applications [10], and also yields improved dynamics for
concentration and purification applications [11].

One of the first detailed studies of dispersion in pressure-
driven channel flow was published by Taylor in 1953 [12]. He
showed that, under fairly general conditions, the cross-sec-
tional average of the unsteady, 3-D concentration field
evolves as a 1-D convection-diffusion equation, where the
diffusion coefficient, D, is replaced with an effective disper-
sion constant. The concept has proved to be extremely useful
and has been extended to other flow regimes [13] and geo-
metries [14]. Alternative analyses have generalized the
approach [15, 16], and in the field of microfluidics, the anal-
ysis has been applied to electroosmotic flows [17] and elec-
trophoresis in nanochannels [18]. TGF is relatively new and
no analysis of TGF dispersion has been presented.

Microfluidic TGF was first demonstrated by Ross and
Locascio [8]. Using a buffer which demonstrates a tempera-
ture-dependent ionic strength (e.g., due to temperature-de-
pendent dissociation of a weak electrolyte), they successfully
focused charged fluorescent dyes, amino acids, green fluo-
rescent protein, DNA, and polystyrene particles, illustrating
the general applicability of TGF. TGF has subsequently been
extended to DNA hybridization assays and SNP detection
[19], as well as the detection of chiral enantiomers [20].
Focusing of neutral and ionic hydrophobic analytes has also
been achieved [21] using TGF combined with micellar EKC
[6].
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In this work, we develop a dispersion theory for focusing
systems and compare with results from our TGF experi-
ments. The paper is organized as follows, we first review the
basic theory relevant to TGF. Then we develop our general
dispersion theory, which comprises a lubrication solution for
the flow field, a generalized dispersion analysis yielding a
Taylor-like dispersion equation, and simplified analytical
solutions for the shape of focused peaks. Finally, we describe
our experimental results, beginning with our calibration
experiments and concluding with our focusing results.

2 TGF theory

In TGF, a temperature gradient is applied axially along an
electrophoretic channel. Within the channel, the local elec-
tric field is inversely proportional to conductivity [8], which in
turn is a function of local viscosity and ion density. By
selecting a buffer with a temperature-dependent con-
ductivity, we create an electric field gradient that causes a
decrease in electrophoretic mass flux along one direction in
the channel. We then impose a net bulk flow in the opposite
direction (see Fig. 1), through a combination of EOF and
pressure-driven flow. As we shall discuss below, charged
species focus at points where local fluxes associated with
area-averaged liquid velocity, �ubulk, electrophoretic velocity,
�ueph, and a “diffusive velocity” term (i.e., a net drift in species
associated with the gradient of diffusivity) of the form
�d�D=dx sum to zero. Here, D is the diffusivity, x is the axial
direction, and the overbars indicate the cross-section average.

Figure 1. Scheme of TGF process (after Fig. 1 of Ross and Locas-
cio [8]). A temperature gradient is applied to a microchannel
which induces a gradient in the electrophoretic velocity of an
analyte. A counterflow of liquid opposes the electrophoretic flux.
The analyte focuses at the point where the electrophoretic and
convective fluxes sum to zero. Both molecular diffusion and
advective dispersion contribute to the broadening of the band
about the focus point. The top image shows 50-fold focused
Bodipy in an applied electric field of 40 V/mm within a
206200 mm wide channel.

We leverage the net neutrality approximation [22] and
use Ohm’s law to determine the local electric field, and write
the electrophoretic velocity as

ueph ¼ nephE ¼ nephi=s (1)

where neph is the electrophoretic mobility, E the electric field,
i the current flux, and s the conductivity. In further analyz-
ing the behavior of TGF, we adopt the convention of Ross
and Locascio, [8] and write the conductivity as
sðTÞ ¼ m0s0=ðmf Þ, where m0 and s0 are the buffer viscosity
and conductivity at a defined reference temperature, m(T) is
the viscosity, and f(T) is a nondimensional function incor-
porating any remaining conductivity dependencies. (The
parenthetic “T“ is a reminder that these quantities are
temperature-dependent.) A similar decomposition is
applied to the electrophoretic mobility, such that
neph ¼ n0;ephm0=ðmf ephÞ where n0,eph is the analyte’s electro-
phoretic mobility at the reference temperature, and feph(T)
accounts for any other temperature dependencies. As point-
ed out by Ross and Locascio [8], the usefulness of this
decomposition becomes apparent when we solve for the 1-D
electrophoretic velocity (i.e., in the case of uniform cross-
sectional temperature). If we assume uniform current, I,
and again use Ohm’s law to calculate the local electric
field, the axial electrophoretic velocity reduces to
ueph ¼ n0;ephE0f =f eph, where E0 = I/As0, and A is the chan-
nel cross-sectional area. In this work, we assume feph(T) = 1,
which is equivalent to saying the ion has constant charge and
obeys a Stokes hard sphere drag model. In this case, we see
that the electrophoretic velocity is a function only of the
temperature, through f. Additionally, we note that the rate of
mass accumulation due to electrophoretic focusing over a
volume is proportional to the difference in f on the bound-
aries. However, for a differential volume, or for linear f(T(x)),
the focusing is proportional to the slope of f.

3 Dispersion theory

We model our focusing system using a convection-diffusion
equation incorporating a conservative electrophoretic flux
term. In its most general form, we have

qc
qt
þ ubulkrc þrðuephcÞ ¼ rrðDcÞ (2)

where c is the concentration of our sample analyte and D is
the analyte’s molecular diffusivity. Note the placement of the
diffusivity within the second gradient operator. This reflects
the use of the Fokker–Planck diffusivity law, J = 2=(Dc).
While it is common (albeit incorrect) practice to use Fick’s
law for the diffusive flux (yielding the traditional =?D=c),
Fick’s law strictly applies only for homogeneous D [23]. To
recover the more familiar diffusion representation, we can
carry out the differentiation, which yields the terms, D=c and
c=D. The latter term thus represents a flux due to a diffusiv-
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ity-induced velocity, =D, that we then move to the left-hand
side of the equation and combine with the electrophoretic
velocity.

We wish to simplify our general equation to gain insight
into the dispersive characteristics of the system. Our goal is
to generate analytical solutions that may be used for design
guidance. In the following sections, we develop an analytical
expression for the bulk velocity using the lubrication
approximation, apply generalized dispersion theory to yield a
1-D convection-diffusion equation for TGF, then construct
analytical solutions.

3.1 Velocity field

As in most microchannel systems, the Reynolds number is
much less than unity and the Debye length is several orders
of magnitude smaller than the characteristic dimensions of
the channel. In contrast to typical systems, the axial temper-
ature gradient induces conductivity and permittivity gra-
dients in the channel, and these result in net charge in the
bulk flow (i.e., regions outside charged double layers) [24],
but, for the length scales and temperature gradients of typi-
cal electrophoresis flow fields, the dispersion associated with
these electric body forces can be neglected compared to dis-
persion caused by gradients in the wall zeta potential [11]. We
can therefore assume that the bulk flow has no net charge
and use a modified form of the Stokes equation,
0 ¼ �rpþrmðrubulk þ ðrubulkÞTÞ to account for the vary-
ing viscosity. The nonuniform slip boundary condition is
given by the Helmholtz–Smoluchowski relation of the form
ueo ¼ neoE ¼ ezE=m, where ueo is the EOF velocity at the
interface between the bulk and charge layer, e is the permit-
tivity, � the zeta potential, E the local axial electric field, and m
the local viscosity [25].

Extending the decomposition procedure described in
Section 2 to the electroosmotic velocity, we find that we can
write the local electroosmotic slip velocity as

ueo ¼ neo;0E0f ðTÞgðTÞ (3)

where we define gðTÞ � neoðTÞmðTÞ=neo;0m0 ¼ eðTÞzðTÞ=e0z0.
Equation (3) is strictly applicable only when the buffer temper-
ature and wall temperature are equal. If a significant wall-nor-
mal temperature gradient exists within the channel, g should
be evaluated with the wall temperature, while f is evaluated
with an area-averaged buffer temperature.

At this point, we limit our discussion to flow between
two large parallel plates (although our approach can also
be applied readily to flow in a cylindrical tube) and elim-
inate the z-dependence. To determine an analytical expres-
sion for the velocity field, we extend the lubrication flow
solution of Ghosal [26] to include variable viscosity and the
nonuniform electroosmotic slip velocity of Eq. (3). (For ad-
ditional details on the derivation, see Appendix A.) This
gives

ubulkðx; yÞ ¼

a2

2 mh i
DP
Lch
þ 3

2
neo;0E0

mfgh i
mh i � fg

� �� �
1� y2

a2

� �
þ neo;0E0fg (4)

vbulkðx; yÞ � 0 (5)

where a is the channel half-height, Lch the length of the
channel, nP the applied pressure difference, and the angle
brackets indicate an axial mean over the length of the chan-
nel. The flow field is a superposition of a uniform electro-
osmotic component and a parabolic (in y) pressure-driven
component. These two are linked through continuity, so as
one decreases, the other must increase. Thus, the pressure
driven flow component (curved brackets) contains both the
externally applied pressure gradient and the internally gen-
erated pressure gradient, which results from the local slip
velocity deviating from the axial average. Note that the angle-
bracketed terms are uniform and constant, and f and g are
functions of T, so the velocity profile varies in x in response to
axial temperature changes.

3.2 Generalized dispersion analysis

We now return to the general convection-diffusion equation,
Eq. (2). To begin our generalized dispersion analysis, we
decompose our variables into a cross-sectional area-averaged
component and a deviation component, as suggested by the
work of Stone and Brenner [16]. In Cartesian coordinates, the
decomposed variables take the form f ¼ �f ðxÞ þ f 0ðx; y; zÞ,
where the overbar denotes the area-averaged value and the
prime denotes the deviation component. The cross-sectional

average is given by simply �f ¼
Z

fdA

� �
=A. (Note this is in

contrast to the axial average used in the lubrication solution,
which is denoted by , ..)

After decomposing the terms in Eq. (1), we perform the
cross-sectional average of the full equation, thus eliminating
products containing a single deviation term. (The average of
a deviation term is zero, by definition.) This leaves several
integral terms which are simplified by applying continuity
ðqu0=qx þ qv0=qyþ qw0=qz ¼ 0Þ and the no-flux boundary
conditions at the wall (qc0=qn ¼ 0 where c0 is the deviation
concentration and n is the wall normal direction), yielding
(in scalar form):

q�c
qt
þ �ubulk

q�c
qx
þ q
qx

�ueph�c � q�D
qx

�c

� �
¼

¼ q
qx

�D
q�c
qx
þ q
qx

D0c0 � u0bulkc0 � u0ephc0
� �

(6)

At this point, we note that no significantly limiting approx-
imations have been made to the general problem. Equation
(6) is the transport equation for the area-averaged con-
centration. It has the same form as the standard 1-D trans-
port equation with the addition of three cross-correlation
terms that contribute to the dispersion.
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We now simplify Eq. (6) assuming an ideal temperature
gradient system in which the temperature varies only in the
axial dimension. In this case, although the molecular diffu-
sivity and electrophoretic velocity are functions of tempera-
ture, D0 and u0eph both equal zero.

The remaining correlation term on the right-hand side,
u0bulkc0, corresponds to the advective dispersion arising from
transverse variations in the axial velocity. To evaluate this, we
require the transport equation for the deviation concentra-
tion, which is derived by subtracting Eq. (6) from the
decomposed form of Eq. (2). We then apply the ideal (i.e.,
uniform in y) temperature gradient simplification to obtain
(for the full vector equation):

qc0

qt
þ �ubulkrc0 þ u0bulkrð�c þ c0Þþ

þrð�uephc0 � c0r�DÞ ¼ r � �Drc0 þ ru0bulkc0 (7)

We further simplify the deviation equation by invoking our
parallel plates geometry and removing the z-dependence. We
then eliminate terms using the following Taylor-analysis
inspired scaling arguments [16] of the form

�c � c0;
Lpeak

a
� Upa

�D0
� Pea;

Lgrad; Lpeak � a; u0bulk ¼ OðubulkÞ (8)

where the new terms are the area-averaged pressure-driven
velocity (i.e., neglecting the uniform contribution due to
electroosmosis), Up, the molecular diffusivity at the focus
point, D0, the pressure-driven Peclet number, Pea (defined as
shown), the length of the temperature gradient region, Lgrad,
and the characteristic axial dimension of the peak, Lpeak.
Under these conditions, our system falls within the Taylor–
Aris regime [13] for convective transport, and the deviation
equation reduces to

u0bulk
q�c
qx
¼ �D

q2c0

qy2
(9)

(For further details on the scaling, see Appendix B.) We note
that �D and u0bulk are both functions of x. Given an expression
for u0bulk we may then solve for c0 in terms of �c. To yield u0bulk

we perform the area-averaged decomposition on the lubrica-
tion flow solution, Eq. (3), which gives

�ubulk ¼
a2

3 mh i
DP
Lch
þ neo;0E0

mfgh i
mh i (10)

u0bulk ¼
a2

3 mh i
DP
Lch
þ neo;0E0

mfgh i
mh i � neo;0E0fg

� �
1
2
� 3y2

2a2

� �
(11)

Here, the bracketed expression is the area-averaged value of
the local pressure driven flow (Up). Under equivalent focus-
ing conditions (i.e., same focus temperature and negligible
Joule heating), Up , E0 since the applied pressure gradient

must also grow as E0 to maintain the focusing criterion.
Substituting Eq. (11) into Eq. (9), we can integrate to obtain
c0. We may now determine the advective dispersion con-
tribution.

u0bulkc0 ¼ 2
105

U2
pa2

�D

q�c
qx
¼ 2�D

105
Pe2

a
q�c
qx

(12)

We substitute Eq. (12) into our cross-section averaged trans-
port equation yielding its final form

q�c
qt
þ �ubulk

q�c
qx
þ q
qx
ð�ueph�cÞ � q

qx
q�D
qx

�c

� �
¼ q

qx
Deff

q�c
qx

� �
(13)

where

Deff ¼ �D 1þ 2
105

Pe2
a

� �
(14)

Our 1-D convection-diffusion equation has features of the
Taylor–Aris dispersion equation. However, in contrast to
Taylor–Aris, Deff is here a function of temperature and the
axial coordinate, as it depends on both �D and Up. There is
also a diffusive drift velocity due to the axial gradient of �D.

3.3 Extension to 3-D channels

While the parallel plates formulation used above is a rough
approximation to 3-D channels, it is made here to simplify
the derivation of the dispersion correlation. This analysis
results in dispersion rate relations with the correct depend-
ence on bulk velocity, channel depth, and molecular diffu-
sivity. However, it neglects the dispersion associated with the
sidewalls (channel walls parallel to the x–y plane). As noted
by Ajdari et al. [27], to remain within the Taylor regime we
must also satisfy Lpeak/w .. Pew, where w is the channel
width. We can then account for the additional sidewall dis-
persion by multiplying our advective dispersion term (Eq.
12) with a factor given by the Chatwin solution for rectan-
gular cross-section channels [28]. For the case of a 10:1
aspect ratio channel, the multiplier is approximately 7
[29]. The effective dispersion coefficient is then
Deff ffi �Dð1þ 14 Pe2

a=105Þ.
In summary, our analysis is valid for the case of TGF in a

long thin channel with thin electric double layers and negli-
gible bulk charge. We also assume Pea ,, L/a, Pew ,, L/w,
a ,, Lgrad, Lpeak, and uniform temperature within a given
cross-section. If any of these assumptions are violated, then
new dispersion mechanisms may arise. For example, if Pea is
of order Lpeak/a, then ballistic dispersion [27] can become
significant. While these restrictions seem limiting, we note
that use of small channel cross-sections can ensure that all
criteria are met.

3.4 Analytical solutions

We wish to develop analytical solutions for the 1-D cross-
section averaged convection-diffusion equation, in order to
understand the influence of dispersion on the shape of
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focused sample bands. To do so, we begin with the quasi-
steady approximation, which assumes that sufficient focus-
ing has occurred, such that the rate of accumulation is small
relative to the diffusive and electromigration fluxes. We can
then eliminate the unsteady term in Eq. (13). Next, we elim-
inate the diffusive “velocity” term (which is small relative to
the electrophoretic velocity) and integrate the quasi-steady
state equation in x to yield the 1-D flux equation.

Deff ðTðxÞÞ
q�c
qx
¼ ½�ubulk þ E0n0f ðTðxÞÞ��cðxÞ þ C1 (15)

where C1 is the constant of integration corresponding to the
net species flux. At steady state, the net flux is zero. In prac-
tice, quasi-steady systems will experience some degree of net
flux, since it is difficult to position a peak such that the flux
from the left-hand side exactly balances the flux from the
right-hand side. If we neglect the influence of this flux on the
peak shape (and set C1 = 0), we see that the solution has the
form

cðxÞ ¼ c0exp
Z

�ubulk þ E0n0f ðTðxÞÞ
Deff ðTðxÞÞ

dx

� �
(16)

In general, since both the dispersion coefficient and f have a
complex dependence on x, this equation may only be solved
numerically. However, if we approximate Deff and f with Tay-
lor series expansions about the focus point, a variety of ana-
lytical solutions exist. For uniform effective diffusivity and
linear f = f1x 1 ffoc (i.e., 0th and 1st order Taylor expansions),
Ross and Locascio [8] determined that the solution to (Eq. 16)
is a simple Gaussian with variance a2 ¼ �Deff=E0n0f 1, (at a
stable focus point, E0n0f1 , 0). (Also, see Ghosal and Horek
[30] for a numerical solution of the unsteady equation using
uniform Deff.) To account for the spatial variation of disper-
sion, we also expand the effective dispersion coefficient to
first order, giving Deff = D1x 1 Dfoc. We can then integrate
Eq. (16) to obtain

c ¼ c0exp �ex=L� lnð1þ ex=LÞ
a2=L2

� �
(17)

where ex ¼ x � xfoc, L = Dfoc/D1, and a2 is �Dfoc=E0n0f 1.
Under this scaling, the solution collapses to a curve whose
shape is determined by a/L, as shown in Fig. 2. Despite its
unusual form, Eq. (17) produces curves similar to Gaussians,
but with a skew that becomes more pronounced as a/L
increases. a2 roughly corresponds to the variance of the curve
(and in the limit as L grows very large, Eq. (17) can be reduced
to a Gaussian with SD, a). L represents the distance over
which the linear dispersion coefficient changes by its magni-
tude at the focus point. a2/L2 determines the sharpness of the
peak and is equal to the ratio of the characteristic focusing
time scale, 1=E0n0f 1 to the dispersion time scale, L2/D.

This first-order model is the simplest model that cap-
tures the asymmetric tailing due to the axial variation in dis-
persion. Note that the solution breaks down at ex ¼ �L, and
care must be taken in avoiding this unphysical range of the
equation.

Figure 2. Nondimensional axial concentration profiles. This plot
shows the effect of changes in the dispersion length scale, L, and
focusing parameter, a, on steady-state concentration profiles. For
large a/L, the peak is wider and strongly asymmetric. The con-
centration profiles are normalized to give equal areas under the
curves.

4 Materials and methods

Our calibrations and experiments were performed with Tris-
borate focusing buffer, composed of 900 mM Tris and
900 mM boric acid (Sigma-Aldrich, MO). The buffer con-
ductivity and pH were measured with a combination pH/
conductivity meter (Corning, NY). Conductivity ranged from
2.2 mS/cm at 207C (s0) to 7.6 mS/cm at 747C, while pH var-
ied from 8.4 to 7.9 at 547C. For temperature imaging and
focusing experiments, we prepared solutions of rhodamine
B (Arcos Organics, Belgium), fluorescein, Bodipy proprionic
acid, and Oregon Green 488 carboxylic acid (Molecular
Probes, OR) using in-house deionized water which was fil-
tered with a 0.2 mm filter (Nalgene, NY) prior to use. We used
50 mm long rectangular borosilicate glass capillaries (Vitro-
com, NJ) with nominal inner dimensions of 206200 mm for
our microchannels. The capillaries were mounted on a
microscope slide or cover slip glass and encapsulated within
polydimethyl siloxane (Sylgard 184, Dow Corning, MI,
USA). Silicone O-rings were epoxied at the channel ends to
interface to the external fluidics. The microchannel assembly
is shown in Fig. 3.

4.1 Experimental setup

The microscope slide of the channel assembly was attached
to two thermally regulated copper blocks using thermally
conductive tape (3 M, St. Paul, MN) such that the capillary
spanned a 2 mm gap between the blocks. The block temper-
ature was controlled using thermoelectric heater/coolers (TE
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Figure 3. Microfluidic chip assembly. The 206200 mm rectan-
gular glass borosilicate capillary is just visible and spans the dis-
tance between two O-ring reservoirs and underneath an insulat-
ing PDMS block. As PDMS tended to adsorb dust and particles, a
coverslip was adhered to the top of the PDMS block to provide an
easily cleaned, and optically smooth upper viewing surface.

Technology) mounted on a copper, liquid-cooled, heat
exchanger (Melcor, NJ). Water was circulated from an exter-
nal reservoir by a miniature gear pump (Greylor Dynesco,
FL). The temperature of each block was monitored using a
thin film resistance temperature detector (RTD) (Omega
Engineering, CT) and closed-loop control was provided by
two TEC power supply/controllers (Alpha Omega Instru-
ments, RI). A schematic for the experimental setup and a
photo of the TGF fixture is given in Fig. 4.

For the temperature measurement and focusing experi-
ments, a high-voltage power supply (Spellman, NY) provided
up to 6000 V, giving a maximum applied field of 120 V/mm.
We controlled the amount of externally applied pressure by
adjusting the relative heights of two external reservoirs (two
plastic 140 mL syringe barrels) using a Newport M-436 high-
performance linear stage. The reservoirs were connected to
the TGF assembly via large bore tubing (1/16th inch FEP
tubing). In these experiments, current was measured using
an Agilent 34001A digital multimeter (Agilent, CA), with a
resolution of 0.5 mA. In all experiments, the potential was
applied across the channel using platinum wire electrodes
placed in the external reservoirs.

4.2 Current monitoring and conductivity

measurement

We performed current monitoring experiments to quantify
temperature-dependent electroosmotic mobility following
the method described by Huang et al. [31]. Measurements
were made in a TGF fixture with a single temperature-regu-
lated block to present a uniform temperature to the capillary.
To more accurately track the capillary temperature for the
calibration measurements, we fabricated a microchannel
assembly with a thin film RTD that was embedded within

Figure 4. Control schematic and image of setup for TGF experi-
ments. (a) The TGF assembly provides the thermal, fluidic, and
electrical interface to the microchannel. A temperature gradient
is established across a gap between two copper plates, each
heated or cooled by a thermoelectric (Peltier) device. Pressure
control is accomplished by adjusting the relative heights of two
external reservoirs. (b) In the assembly photo, the microfluidic
chip is mounted on the TGF assembly. The encapsulating PDMS
block is located directly below the objective, and the fluidic
manifolds are to the left and right of the block.

the PDMS block adjacent to the capillary. An Agilent 34970A
Data Acquisition/Switch Unit (Agilent) measured the RTD
output. A Keithley Sourcemeter 2410 (Keithley, OH) simul-
taneously applied voltages ranging from 100 to 1100 V and
measured currents in approximately the 2–30 mA range. To
measure the buffer conductivity versus temperature and
thereby extract f(T), we used the plateau current values from
the current monitoring runs. These values agreed well with
bulk conductivity measurements made using our con-
ductivity meter.

4.3 Fluorescence imaging and temperature

measurement

We performed fluorescence imaging using an upright epi-
fluorescent microscope (Nikon) fitted with a 46 objective
with numerical aperture (NA) of 0.2 (Nikon). For the tem-
perature calibration measurements, we used a 106 objective
with NA = 0.30. In both cases, images were subsequently
reduced by a 0.56 demagnifier before capturing on a cooled
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12-bit interline CCD camera (Roper Scientific, AZ). The
CCD featured a 130061024 pixel array and pixel size of 6.67
mm square. Illumination was provided by a mercury lamp
filtered using a filter cube (Omega Optical) matched for the
fluorophore under study. Neutral density filters (typically
ND16 or ND4616) were placed in the illumination train to
reduce photobleaching-induced effects. Frame exposure
times were 1000 ms for the focusing images and 250–
300 ms for the temperature images. Fluorescence images
were normalized using a correction of the form
NI = (S 2 B)/(F 2 B), where S is the raw image intensity, B
the (illuminated) background, and F the flatfield intensity
value. 1-D, area-averaged profiles were created by averaging
pixel columns across the capillary.

We performed temperature field imaging based upon the
temperature-dependent quantum efficiency of rhodamine B
dye, using the method described by Ross and co-workers [8,
32]. Temperature measurements were performed in the
focusing buffer. To construct the calibration curve for
100 mM rhodamine B in 900 mM Tris-borate buffer, we per-
formed fluorescence measurements versus temperature
using the single-block temperature-control fixture and
microchannel assembly described in Section 4.2 [33, 34].

4.4 Focusing protocol

Focusing experiments were performed in the TGF assembly
using 900 mM Tris-borate buffer. The system was configured
with the left- and right-hand blocks as the cold and hot
blocks, respectively. The magnitude and direction of applied
pressure gradient varied according to the electric field, mag-
nitude of the analyte’s electrophoretic mobility, and the tem-
perature conditions of the channel. In order to locate the
initial peak, we loaded the dye into the left-side reservoir,
then allowed the dye wave front to progress into the focusing
volume under pressure-driven flow. Once the wave front was
established, the applied voltage and pressure head were
adjusted until focusing was observed.

For pseudo-steady measurements, we first allowed the
sample peak to focus at constant rate until its relative growth
rate, Dc0/c0, was negligible. Here Dc0 is the change in the
maximum concentration over the frame capture period
(typically 15 or 30 s). In practice this meant that a negligible
peak increase was observed between images taken 30 s apart.
We then imaged the peak.

4.5 Velocity and diffusivity estimates

To quantify the amount of external pressure-driven flow,
images of focused peak were recorded as the electrical circuit
was opened (removing the imposed electric field and initiat-
ing a flow driven only by the height difference between the
liquid levels in the reservoirs). By fitting Gaussians to the
intensity profiles generated from the images of the moving
peak, we estimated the area-averaged velocity by measuring
the slope of the peak location versus time. To estimate the

diffusivity, we performed a similar estimate, fitting peak var-
iance with sðtÞ2 ¼ s2

0 þ 2Dt following deactivation of the
electric field.

5 Results and discussion

We performed a set of experiments to study TGF dispersion
in practice and evaluate the range of applicability of the
model.

5.1 Calibration results

The temperature field measurements verified the presence of
a linear temperature gradient within the gap region for the
focusing fields presented in this work. Figure 5 shows repre-
sentative temperature profiles across the gap for a wide range
of normalized electric fields. For this example, the left and
right block temperatures were set to 20 and 607C. The tem-
perature gradient had to be corrected to account for tempera-
ture drops across the microchannel assembly. For example, at
zero applied field, the buffer temperatures at the left and right
sides of the gap were 27 and 547C, respectively. For the electric
field strengths used in this study, Joule heating effects were
small (less than 37C temperature rise at 50 V/mm) and trans-
verse gradients were negligible (0.37C or less difference across
the channel width at 50 V/mm). Measured temperature pro-
files were fit using second-order polynomials. To estimate the
temperature profiles at arbitrary fields, we used a 2-D inter-
polation matrix (vs. x and E).

Figure 5. Sample axial temperature profiles versus reference
field strength in a coverslip-based chip. Temperature profiles are
shown for applied voltages of 0–5000 V at 500 V increments. The
normalized electric field, E0, is given for select profiles. The pro-
files span the distance between the regulating temperature
blocks. The left block temperature was 207C and right block tem-
perature was 607C. 1-D temperature profiles were generated from
processed rhodamine B intensity images by averaging a 20 pixel
strip (67 mm width) centered on the axis of the channel.
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Using the results from 20 microchannel current monitor-
ing measurements over the range of 10–807C, we calculated
f(T), and found it to be in reasonable agreement with Ross and
Locascio [8]. A least-squares fit using a cubic polynomial
gives f(T) = (25.17E 2 7)T3 1 (1.17E 2 4)T2 2 (1.17E 2 2)
T 1 1.27, with R2 = 0.998. We also determined the electro-
osmotic mobility as a function of temperature, which was
neo,0 = 1.1E 2 8 m2/V?s at the reference temperature (207C).
Using Eq. (3), we calculated g(T), which was well described by
a linear fit, g(T) = 0.0047T 1 0.91 (R2 = 0.98). By combining
these functional forms of f and g with the temperature profile
interpolation matrix, we could estimate the values of f, g, and f1
(the slope for f linearized about the focus point) at arbitrary
fields and locations.

Together, f, g, and the electroosmotic mobility allow the
determination of the local slip velocity according to Eq. (3).
Variations in f and g cause the local slip velocity to deviate
from the axial mean, leading to internally generated pressure
gradients [35]. The internally generated pressure flow and
externally driven flow both contribute to advective dispersion
(Eq. 12). In principle, it is possible to calculate the internally
generated component of Up using our lubrication solution,
but in practice it is difficult because it depends not only on
the temperature profile throughout the entire channel, but
also on the temperature, geometry, and electroosmotic mo-
bility of the external fluidic components. In our experiments,
if we consider only the induced pressure flow due to tem-
perature variation within the channel, the dominant con-
tribution to Up at the focus locations is the externally
imposed flow velocity, while the magnitude of the internally
generated pressure gradient is estimated to be less than 13%
of Up at the peak locations. We therefore chose to neglect
internally generated pressure gradient flows in our sub-
sequent dispersion calculations.

5.2 TGF results

To evaluate dispersion, we performed TGF experiments with
a variety of fluorescent analytes, under a range of applied
electric fields, DV/Lch, and nominal temperature gradients,
DT/Lch. Figure 6 shows sample full-field fluorescence images
of focused Bodipy proprionic acid with DT/L = 107C/mm and
DV/Lch = 10–40 V/mm. The external pressure head, equal to
the difference in fluid height between the two external
reservoirs, increases roughly linearly, with 27 mm-H2O
applied for the 1 V/mm field and 225 mm-H2O for 40 V/
mm. The direction of electrophoretic flux is left to right,
while the bulk flow is right to left, driven by electroosmosis.
(Note the external pressure head in this case is acting to
reduce the total bulk flow.)

For the focused peaks of Fig. 6, the temperature gradient
is relatively small. Consequently, the change in diffusivity
across the peak is also small. Under these conditions, the
ratio of the peak width to the diffusivity-change length scale,
a/L, is small and the area-averaged intensity profiles are
nearly Gaussian in shape, as expected. In fact, under our

Figure 6. Full-field intensity images of focused Bodipy dye as a
function of electric field strength. Images (i–v) show focused
Bodipy dye within a 206200 mm rectangular capillary. The
applied temperature gradient was 107C/mm and the applied
electric fields ranged from 210 to 240 V/mm, yielding current-
normalized fields, E0, of (i) 21.5, (ii) 215, (iii) 230, (iv) 246, and (v)
264 V/mm. The net bulk flow is right to left, driven by electro-
osmosis.

experimental conditions, we found focused peaks are often
well represented using Gaussians. Figure 7 shows a com-
parison between Gaussian and exponential-log fits to Bodipy
focused in a larger temperature gradient, equal to 307C/mm.
For this data, we observe some skew. While the exponential-
log solution better captures the tailing behavior, a Gaussian
solution is also a very good approximation, and standard
Gaussian fitting tools are useful in peak analysis. Based on
these observations, we chose to measure our experimental
peak widths using Gaussian fits.

To study peak width as a function of electric field, we
performed a series of focusing experiments in approximately
the same location. We used applied voltages of less than

Figure 7. Comparison of Gaussian and skewed profiles. The plot
compares fits using the Gaussian and exponential-log (or
“skewed”) solutions to the area-averaged intensity profile for a
bodipy dye focused at an applied electric field, DV/L, of 40 V/mm
and an applied temperature gradient, DT/L, of 607C. The skewed
solution better captures the profile asymmetry, but the Gaussian
is a very good approximation.
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2000 V to minimize the effects of Joule heating. The results
are shown in the plot of Fig. 8. Here, the temperature reg-
ulating blocks were set at 20 and 407C to give a near linear
f-profile, and the mean focus temperature was 30.77C with a
SD of 1.17C. The magnitude of the external pressure-driven
velocity increased linearly from 20.6 to 262 mm/s with
increasing field. The error bars show the 95% confidence
interval based upon an error propagation estimate of the SD
in focus position measured for the full data set. (The SD cal-
culated from 15 frames of one realization is less than 0.5% of
the measured width, indicating the accuracy of our pseudo-
steady assumption.)

We see an approximately inverse square root dependence
of peak width with respect to field. The field magnitudes of
Fig. 8 correspond with an estimated Pea range of 0.01–1.2,
based on our measurement of the externally driven pressure
flow. Although we satisfy Pea ,, L/a over the whole range,
we violate our assumption that Pw ,, L/w (for fields larger
than 3 V/mm). Neglecting the additional ballistic dispersion
incurred in the width dimension, Taylor dispersion (includ-
ing the Chatwin modifier) is predicted to add about 20% over
the molecular diffusivity, which corresponds to an increase
in peak width of 10%. However, with this amount of advec-
tive dispersion, we expect to see greater curvature in our
focused dye bands. Instead, the deviation is small (i.e.,
c0 � 0). We conclude that the internally generated and exter-
nally generated pressure gradients are counteracting one
another, thus extending the applicability of the Taylor–Aris
analysis.

Figure 8. Bodipy peak width versus field. SDs are plotted for the
Gaussian fit to the intensity profile data. Error bars show the 95%
confidence interval of the peak width based on an error propa-
gation analysis for the positional uncertainty of the full data set.
The solid line shows the theoretical width prediction for a peak
focused at the mean position, with neph,0 = 20.53E 2 8 m2/V?s,
Dfoc = 5E 2 10 m2/s, and f1, = 34.5–31.4/m. The dashed line shows
the theoretical prediction based on an independent mobility
estimate of neph,0 = 20.6E 2 8 m2/V?s.

Using the Gaussian solution, the theoretical peak width

is a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dfoc=E0neph;0f 1

q
. To generate predictions for the

peak width, we assumed a uniform focus location equal to
the mean position for the series for Figs. 6 and 8. The focus
temperature (which ranged from 29.5 to 31.57C) and f1
(which decreased from 235 to 232/m with increasing volt-
age) were determined using the temperature interpolation
matrix as a function of E0, as described in Section 5.1. To
determine the dispersion coefficient, we assumed Up was
negligible and set Dfoc equal to the molecular diffusivity.

We needed to generate independent estimates of the dif-
fusivity and electrophoretic mobility because the Bodipy
proprionic acid interacted with the Tris buffer yielding mul-
tiple species (data not shown). For the diffusivity, we used the
value obtained from our moving peak measurements (see
Section 4.5), which was Dfoc = 5E 2 10 6 1.5E 2 10 m2/s at
the mean temperature of 307C. For the electrophoretic mo-
bility we obtained two estimates. The first was generated
from a fit of the experimental data (excluding the four lowest
electric fields), giving neph,0 = 20.53E 2 8 m2/V?s and yield-
ing the solid theory curve shown in Fig. 8. The second was an
estimate derived from independent focusing measurements
(data not shown), neph,0 = 20.6E 2 8 m2/V?s, which gives the
dashed curve of Fig. 8. (These values differ from published
values for the electrophoretic mobility (22E 2 8 m2/V?s)
and diffusivity of Bodipy (6E 2 10 m2/s) [36], which supports
the hypothesis that the focused peak is not simply bodipy but
a reaction product with the Tris buffer [37].)

The experimental and theoretical peak widths agree clo-
sely with some deviation at low fields. The low-field deviation
falls below the line because the focused peak remains
slightly “over-focused” as field was decreased, having had
insufficient time to diffuse out to its “full” width. We are
currently analyzing and constructing a model for TGF at
higher fields. In our 10:1 aspect ratio channels, high field
conditions correspond to Pew . L/w and Pea ,, L/a. In such
regimes, we expect both depth-wise Taylor dispersion and
width-wise ballistic dispersion to be important, and we will
report on this work in a future publication.

6 Concluding remarks

Maximizing resolution by minimizing dispersion is an
important goal in most focusing techniques. In this work, we
developed a generalized dispersion model to provide a fra-
mework for analyzing the various components that con-
tribute to dispersion. We showed that dispersion is well
modeled using an effective dispersion coefficient at low Pec-
let numbers and relatively low applied electric fields (below
400 V/cm for our particular setup). In this range, peak
widths are well predicted by the focusing parameter, a.

In our experimental system (with its 10:1 aspect ratio
channel cross-section), we found that, within the regime of
applicability of our dispersion model, dispersion is well
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approximated by diffusion alone. At higher fields, the
assumption that Pea ,, L/a and Pew ,, L/w is violated.
This will require the introduction of additional terms into the
reduced deviation concentration Eq. (2). Additionally, at high
field strengths, Joule heating can become appreciable and
cause spanwise temperature gradients, requiring us to retain
all the correlation terms in the mean transport Eq. (6). At
such fields, our dispersion model fails and dispersion rate
increases. In a future paper, we shall explore optimization of
resolution across a wider range of electric fields, including
the high field regime where the Taylor–Aris model fails and
ballistic dispersion dominates.
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Appendix A: Derivation of lubrication
flow solution

For steady flows with Re ,, 1, we may eliminate the inertial
terms yielding the Stokes equation. Analytical solutions exist
for both the circular capillary [38] and parallel plate geome-

tries [11]. Instead, we elect to use the lubrication theory
approximation [39], which requires that Re ,, L/a. In prac-
tice, this means that the velocity field changes slowly over the
length of interest. We can therefore neglect nonaxial veloci-
ties and solve for a “fully developed” flow profile at every
location along the channel. Ghosal presents a mathemati-
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cally rigorous development of the lubrication theory for
microchannels with electroosmosis [26]. We extend the the-
ory to account for temperature-based changes in the zeta
potential, permittivity, viscosity, and electric field, abstracting
these changes into the nondimensional f and g functions
defined in Section 2. For our parallel plate geometry, this
yields the local solution:

ubulk ¼ �
a2

2m
dp
dx

1� y2

a2

� �
þ neo;0E0fg (A.1)

Q 0 ¼ � 2a3

3m
dp
dx
þ 2aneo;0E0fg (A.2)

where the new terms are dp/dx, the local pressure gradient
and Q0, the volumetric flow per unit depth. Here, the local
pressure gradient is a function of both the applied external
pressure and the internal pressure gradient generated by the
varying electroosmotic slip velocity, while the volumetric
flow rate is constant. Solving for the pressure gradient in
terms of Q0, we then integrate across the length of the chan-
nel to yield Q0 in terms of the applied pressure DP:

Q 0 ¼ 2a3

3 mh i
DP
L
þ 2aneo;0E0

mfgh i
mh i (A.3)

where the angled brackets indicate a axial average across the

length of the channel, e.g., fh i ¼ ð1=LchÞ
Z

f dx. Equating

Eqs. (A.2) and (A.3), we solve for the local pressure gradient:

dp
dx
¼ � m

mh i
DP
L
þ 3m

a2 neo;0E0 fg � mfgh i
mh i

� �
(A.4)

Inserting Eq. (A.4) into Eq. (A.1) we now have the local bulk
velocity profile as a function of f(T) and g(T).

ubulkðx; yÞ ¼
a2

2 mh i
DP
L
þ 3

2
neo;0E0

mfgh i
mh i � fg

� �� �

1� y2

a2

� �
þ neo;0E0fg (A.5)

We then decompose the mean and deviation components to
obtain

�ubulk ¼
a2

3 mh i
DP
L
þ neo;0E0

mfgh i
mh i (A.6)

u0bulk ¼
U
2

1� 3y2

a2

� �
(A.7)

where

U ¼ a2

3 mh i
DP
L
þ neo;0E0

mfgh i
mh i � neo;0E0fg

� �

Here, U is the area-averaged value of the local pressure-dri-
ven flow, which includes the applied pressure component
(left-hand term) and the internally generated component
(bracketed terms).

One interesting insight produced by this derivation is
that the mean electroosmotic velocity for the channel is

determined not only by the axial mean of the zeta potential,
permittivity, and field (which are captured in the product of
E0 and fg, see Section 2 for definitions), but also the viscosity.
As a result, the mean EOF is the product of E0 and the vis-
cosity-weighted axial average of fg.

Appendix B: Scaling analysis

To begin our scaling analysis, we first expand the deviation
concentration transport equation, Eq. (7), in its scalar form,
eliminating off-axis velocity terms in accordance with the
lubrication theory approximation (Appendix A):

qc0

qt
þ �ubulk

qc0

qx
þ u0bulk

q
qx
ð�c þ c0Þ þ

q�ueph

qx
c0þ

þ �ueph
qc0

qx
� qc0

qx
q�D
qx
� c0

q2 �D
qx2 ¼

q�D
qx

qc0

qx
þ

þ �D
q2c0

qx2 þ �D
q2c0

qy2 þ
q
qx

u0bulkc0 B.1

Next we nondimensionalize using the following scales,

t̂ ¼ t
tfoc

; ĉ0 ¼ c0

C0
; �̂c ¼ �c

�C
; �̂ubulk ¼

�ubulk

Ubulk
;

û0bulk ¼
u0bulk

Up
; �̂ueph ¼

�ueph

Ueph
; �̂D ¼

�D
D0

x̂vel;diff ¼
x

Lgrad
; x̂conc ¼

x
Lpeak

; ŷ ¼ y
a

B.2

where tfoc is the characteristic focusing time scale, C0 the
characteristic deviation concentration, �C the characteristic
mean concentration, Ubulk the mean bulk velocity, and Ueph

the electrophoretic velocity at the focus point (remaining
terms are as defined in the main text of the paper). We note
that there are two characteristic length scales in the axial
direction. The disparate scales arise because the velocity and
diffusion terms vary over the length of the temperature gra-
dient, Lgrad, while the concentration terms vary over the
length of the focused peak, Lpeak. The subscripts on x

_
indicate

the derivatives for which the scalings apply. After substitu-
tion, we have

a2

tfocD0

� �
qc0

qt
þ d

Ubulk

Up

� �
�ubulk

qc0

qx
þ d

�C
C0

� �
u0bulk

q�c
qx
þ

þ ðdÞu0bulk
qc0

qx
þ d

Lpeak

Lgrad

Ueph

Up

� �
q�ueph

qx
c0 þ d

Ueph

Up

� �
�ueph

qc0

qx
�

� a2

LgradLpeak

� �
qc0

qx
q�D
qx
� a2

L2
grad

 !
c0
q2 �D
qx2
¼ a2

LgradLpeak

� �

q�D
qx

qc0

qx
þ a2

L2
peak

 !
�D
q2c0

qx2
þ ð1Þ�D q2c0

qy2
þ ðdÞ q

qx
u0bulkc0 B.3

where we have eliminated the carats on the nondimensional
variables for clarity. d is our smallness parameter, and the
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terms in parentheses are the nondimensional parameters for
our scaling. Since we are considering dispersion in the Tay-
lor–Aris regime, the Taylor dispersion criterion,
Lpeak=a� Pea, holds, and we have substituted for
d ¼ ða=LpeakÞPea.

We wish to simplify the equation and produce a form
that gives an explicit solution for c0. In our system the char-
acteristic velocities have the same order of magnitude, since
they are linked through the focusing criterion. The axial
lengths are much longer than the channel depth
(Lgrad � Lpeak � a), and, under the Taylor–Aris regime, c0 � �c.
Therefore, we can substitute d for a/Lpeak, a/Lgrad, and c0=�c.
Eliminating all terms of order d or higher, we get

a2

tfocD0

� �
qc0

qt
þ u0bulk

q�c
qx
¼ �D

q2c0

qy2 B.4

Considering the characteristic time scale, we note that for
times on the order of the diffusive time scale (tdiff = a2/D0),
the deviation concentration is unsteady. However, we are
interested in times on the order of the focus time, which is
given by the ratio of the focusing distance to the net focusing
velocity. (For the case of a linear gradient of f, this gave
tfoc ¼ Lpeak=E0neph;0f 1Lpeak.) To eliminate the unsteady term,
we require one additional scaling argument, which is

tfoc � tdiff �
a2

D0
B.5

However, recognizing that the width of the peak,
L2

peak 	 D0tfoc, substituting above, we see that our focus time
requirement is already met by our scaling assumption that
a ,, Lpeak. Equation (B.4) can now be reduced to Eq. (9) and
solved for c0, as described in the main text.
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